Skip to content

saurav-datta/mlflow_global_setup

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MLflow Global Setup

Containerized MLflow tracking server with persistent storage.

Quick Start

# Build image
sh scripts/build_image.sh

# Stop and Build image
uv run scripts/stop_container.py && sh scripts/build_image.sh

# Start container (port 5500)
uv run scripts/run_container.py

# Configure shell
source mlflow_env.sh

UI: http://localhost:5500

Usage

Direct logging:

uv run scripts/test_mlflow_project.py

Decorator:

from mlflow_utils import mlflow_track

@mlflow_track(experiment_name="My_Experiment")
def train():
    return {"params": {...}, "metrics": {...}}

Test Decorator

source mlflow_env.sh && uv run scripts/test_decorator_example.py
OR
source mlflow_env.sh && python scripts/test_decorator_example.py

Commands

# Stop container
uv run scripts/stop_container.py
OR
python scripts/stop_container.py

# Check port
lsof -i :5500

Config

  • MLflow version: pyproject.toml
  • Port/paths: mlflow.env
  • Data: ~/mlflow (default)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published